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The Serbian Mathematical Olympiad 2013 for high school students took place
in Novi Sad on April 5–6. There were 31 students from Serbia and 5 guest students
from Russia. Five members of the Serbian IMO team were selected through this
contest, whereas the sixth was selected through an additional exam:

SRB1 Maksim Stokić Math High School, Belgrade
SRB2 Žarko Randjelović HS ”Svetozar Marković”, Nǐs
SRB3 Ivan Damnjanović HS ”Bora Stanković”, Nǐs
SRB4 Bogdana Jelić Math High School, Belgrade
SRB5 Lazar Radičević Math High School, Belgrade
SRB6 Simon Stojković Math High School, Belgrade

In this booklet we present the problems and full solutions of the Serbian Math-
ematical Olympiad with the Additional Team Selection Exam, and the Balkan
Mathematical Olympiad.

Serbian MO 2013 – Problem Selection Committee

• Vladimir Baltić
• Bojan Bašić
• Dušan Djukić
• Miljan Knežević
• Miloš Milosavljević
• Marko Radovanović (chairman)
• Miloš Stojaković

Edited by Dušan Djukić
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SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Novi Sad , 05.04.2013.

First Day

1. Let k be a fixed natural number. A bijection f : Z → Z is such that if i and j

are any integers satisfying |i − j| ≤ k, then |f(i) − f(j)| ≤ k. Prove that for any
i, j ∈ Z

|f(i)− f(j)| = |i− j|. (Miljan Knežević)

2. Define

Sn =

{(

n

n

)

,

(

2n

n

)

,

(

3n

n

)

, . . . ,

(

n2

n

)}

, for n ∈ N.

a) Prove that there exist infinitely many composite natural numbers n such that
Sn is not a complete set of residues modulo n.

b) Prove that there exist infinitely many composite natural numbers n such that
Sn is a complete set of residues modulo n.

(Miloš Milosavljević)

3. Let M , N and P be the midpoints of sides BC, AC and AB respectively, and O be
the circumcenter of an acute-angled triangle ABC. The circumcircles of triangles
BOC and MNP intersect at distinct points X and Y inside the triangle ABC.
Prove that

∡BAX = ∡CAY. (Marko Djikić)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Novi Sad, 06.04.2013.

Second Day

4. Find all n ∈ N for which it is possible to partition the set {1, 2, . . . , 3n} into n

three-element subsets {a, b, c} in which b− a and c− b are different numbers from
the set {n− 1, n, n+ 1}.

(Dušan Djukić)

5. Let A′ and B′ be the feet of the altitudes from A and B respectively of an acute-
angled triangle ABC (AC 6= BC). Circle k through points A′ and B′ is tangent
to side AB at point D. If the triangles ADA′ and BDB′ have equal areas, prove
that

∡A′DB′ = ∡ACB. (Miloš Milosavljević)

6. Determine the largest constant K ∈ R with the following property:
If a1, a2, a3, a4 > 0 are such that for any i, j, k ∈ N, 1 ≤ i < j < k ≤ 4 it holds that
a2i + a2j + a2k ≥ 2(aiaj + ajak + akai), then

a21 + a22 + a23 + a24 ≥ K(a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4).

(Dušan Djukić)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SOLUTIONS

1. The statement is trivial for k = 1, so we assume that k ≥ 2. By an interval of
length k we mean a set of the form {x, x+1, . . . , x+k}, where x ∈ Z. Two integers
x and y are consecutive if and only if there exist intervals I1 and I2 of length k

such that I1 ∩ I2 = {x, y}. Then, since f(I1) and f(I2) also are intervals of length
k and {f(x), f(y)} = f(I1) ∩ f(I2), we deduce that f(x) and f(y) are consecutive
numbers. Therefore |f(x+1)− f(x)| = 1 for x ∈ Z. Finally, taking injectivity into
account, a simple induction on n shows that |f(x+ n)− f(x)| = n.

2. (a) We show that n = 2p satisfies the conditions, where p is an odd prime. We
have

(

2kp

2p

)

= k

p−1
∏

i=1

2kp− i

2p− i
· (2k − 1)

p−1
∏

i=1

2kp− p− i

p− i
≡ k(2k − 1) (mod p).

In particular,
(

2kp
2p

)

is divisible by p for k ∈ {p+1
2 , p, 2p}, so S2p has at least three

elements divisible by p and cannot be a complete residue system.

(b) We show that n = p2 satisfies the conditions, where p is an odd prime. We

have
(

kp2

p2

)

=
∏p2−1

i=0
kp2−i
p2−i = k

∏p−1
j=1

kp2−jp
jp ·

∏

p∤j
kp2−i
p2−i , which yields modulo p2

(

kn

n

)

≡ k

p−1
∏

j=1

kp− j

j
= k

p−1
∏

j=1

(

1− kp

j

)

≡ k − k2p

p−1
∑

j=1

1

j
.

Since
∑p−1

j=1
1
j

=
∑

p−1

2

j=1 (
1
j
+ 1

p−j
) =

∑

p−1

2

j=1
p

j(p−j)
≡ 0 (mod p), it follows that

(

kp2

p2

)

≡ k (mod p2).

Remark. There are other possibilities for numbers n: for instance, (a) n = 8k + 6
for k ∈ N, and (b) n = pk for a prime p.

3. Denote by k1 and k2 the circles MNP and BOC, respectively. Circle k1 is the
nine-point circle of △ABC and passes
through the feet D,E of the altitudes
BD and CE and the midpoint O1 of
AH, where H is the orthocenter of
△ABC.

We claim that the second intersection
point Z of AY and k1 lies on the nine-
point circle k3 of triangle ADE. We as-

A

B C

D

D1

E

E1

M

N
P

O

O1

X

Y

Z
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sume that Z is between A and Y ; the other case is analogous. Let D1 and E1 be
the midpoints of AD and AE, respectively. Since AY · AZ = AD · AN = AD1 ·
AC, points Y, Z, C,D1 lie on a circle, implying ∠AZD1 = ∠ACY . Analogously,
∠AZE1 = ∠ABY , and therefore ∠D1ZE1 = ∠AZD1 + ∠AZE1 = ∠ACY +
∠ABY = ∠BY C − ∠BAC = ∠BAC. Hence Z is on k3.

Since O1 is the circumcenter of △ADE, the similarity mapping △ABC onto
△ADE maps k1 to k2 and k2 to k3, so it takes pointX ∈ k1∩k2 to point Z ∈ k2∩k3.
Therefore ∠BAX = ∠DAZ = ∠CAY .

Second solution. Apply the inversion with center A and power 1
2
AB ·AC, and then

reflect in the bisector of angle CAB. Points B,C and N,P go to N,P and B,C

respectively. Furthermore, point O satisfies ∠ANO = ∠APO = 90◦, so its image
O′ satisfies ∠AO′B = ∠AO′C = 90◦, i.e. AO′ is an altitude in △ABC. It follows
that circle ω1(NO′P ) maps to circle ω2(BOC), and vice-versa. Therefore their
intersection points X, Y map to each other, and consequently ∠BAX = ∠CAY .

4. A required partition of the set {1, 2, . . . , 3n} corresponds to a partition of the
vertices of a regular 3n-gon P1P2 . . . P3n into triples {Ai, Bi, Ci} such that each
of the triangles AiBiCi has the angles n−1

3n
π, n

3n
π and n+1

3n
π. There is a suitable

numeration of the vertices of the 3n-gon such that the vertices A1, B1, C1 are
precisely Pn, P2n−1, P3n in some order. In other words, there is no loss of generality
in assuming that one of the triples in the partition of {1, 2, . . . , 3n} is the triple
{n, 2n− 1, 3n}.
One of the remaining n − 1 triples must contain two numbers from the interval
[2n, 3n−1]. These two numbers must be 2n and 3n−1, so the only such triple not
containing n is {n− 1, 2n, 3n− 1}.
Every other triple contains a number from each of the intervals [1, n − 2], [n +
1, 2n−2] and [2n+1, 3n−2]. The map (a, b, c) → (a, b−2, c−4) for a < b < c now
yields a required partition of the set {1, 2, . . . , 3(n− 2)} into triples. Since such a
partition is impossible for n = 1, a simple induction shows that it is impossible for
any odd n.

On the other hand, for an even n = 2m the triples (2i− 1, 2i+ n, 2i+ 2n− 1) and
(2i, 2i+ n− 1, 2i+ 2n) for i = 1, . . . , m fulfill the requirements.

5. Assume without loss of generality that BC > AC. The lines A′B′ and AB meet
at a point P with A between P and B.
The equality of the areas of ADA′ and
BDB′ gives us AD

DB = PB′

PA′
. It also holds

that PD2 = PA′ · PB′ = PA · PB, and
hence PD

PB = PA
PD = AD

DB = PB′

PA′
. The

last equalities imply that B′D ‖ BC and
A′D ‖ AC, so ∠A′DB′ = ∠ACB. A B

C

A′

B′

DP
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Second solution. Since ∠CB′D = α + ∠ADB′ = α + ∠B′A′D = ∠CA′D = x,
the Sine law in △A′B′D and △AB′D gives BD = BA′ sinx

sin(β+x) and AD = AB′ sinx
sin(α+x) ,

so AD
BD = AB′ sin(β+x)

BA′ sin(α+x) = sin(β+x) cosα
sin(α+x) cosβ . On the other hand, the condition [ADA′] =

[BDB′] implies AD
DB = d(B′,AB)

d(A′,AB) = sinα cosα
sinβ cosβ , i.e.

sin(β+x)
sin(α+x) = sinα

sinβ . From here we

easily obtain ∠AB′D = x = γ.

6. Let max{a1, a2} 6 a3 6 a4 and denote a2 = β2 and a3 = γ2, β, γ > 0. The
problem condition implies a1 6 (γ − β)2 and a4 > (γ + β)2.

Suppose for a moment that these two inequalities are in fact equalities. Then
a21+a22+a23+a24 = 3(β4+4β2γ2+γ4) and a1a2+a1a3+a1a4+a2a3+a2a4+a3a4 =

3(β4 + β2γ2 + γ4). Furthermore, γ 6 2β, hence β4+4β2γ2+γ4

β4+β2γ2+γ4 = 1 + 3β2γ2

β4+β2γ2+γ4 =

1 + 3

1+ β2

γ2
+ γ2

β2

> 11
7
, with equality for γ = 2β. Thus, in this case we have K > 11

7
,

and equality is attained if a1 : a2 : a3 : a4 = 1 : 1 : 4 : 9.

It remains to show that we may indeed assume a1 = (γ − β)2 and a4 = (γ + β)2.
Consider

F = a21 + a22 + a23 + a24 −
11

7
(a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4).

For fixed a2, a3, a4, F is decreasing on a1 for a1 < 11
14
(a2 + a3 + a4), whereby

11
14(a2 + a3 + a4) >

11
14 (β

2 + γ2 + (β + γ)2) > (γ − β)2 > a1, so F will not increase
if a1 is changed to (γ − β)2. Now we can assume without loss of generality that
a1 6 a2, i.e. β 6 γ 6 2β. As above, for fixed a1, a2, a3, F is increasing on a4
for a4 > 11

14
(a1 + a2 + a3), whereby

11
14
(a1 + a2 + a3) 6 11

14
(β2 + γ2 + (γ − β)2) 6

(γ + β)2 6 a4, so F will not increase if a4 is changed to (γ + β)2.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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Additional IMO Team Selection Exam

Belgrade , 27.04.2013.

1. We call polynomials A(x) = anx
n+ . . .+a1x+a0 and B(x) = bmxm+ . . .+b1x+b0

(anbm 6= 0) similar if the following conditions hold:

(i) n = m;

(ii) There is a permutation π of the set {0, 1, . . . , n} such that bi = aπ(i) for each
i ∈ {0, 1, . . . , n}.

Let P (x) and Q(x) be similar polynomials with integer coefficients. Given that
P (16) = 32012, find the smallest possible value of |Q(32012)|.

(Miloš Milosavljević)

2. In an acute triangle ABC (AB 6= AC) with angle α at the vertex A, point E is
the nine-point center, and P a point on the segment AE. If ∠ABP = ∠ACP = x,
prove that x = 90◦ − 2α. (Dušan Djukić)

3. Let p > 3 be a given prime number. For a set S ⊆ Z and a ∈ Z, define

Sa = {x ∈ {0, 1, ..., p− 1} | (∃s ∈ S) x ≡p a · s}.

(a) How many sets S ⊆ {1, 2, ..., p − 1} are there for which the sequence
S1, S2, ..., Sp−1 contains exactly two distinct terms?

(b) Determine all numbers k ∈ N for which there is a set S ⊆ {1, 2, ..., p−1} such
that the sequence S1, S2, ..., Sp−1 contains exactly k distinct terms.

(Milan Bašić, Miloš Milosavljević)

Time allowed: 270 minutes.
Each problem is worth 7 points.



8

SOLUTIONS

1. Since 32012 ≡ 1 (mod 5), it holds that Q(32012) ≡ Q(1) = P (1) ≡ P (16) ≡ 1
(mod 5), so |Q(32012)| > 1.

Now we construct polynomials P and Q satisfying the conditions for which
Q(32012) = 1. Set P (x) = ax2 + bx + c and Q(x) = cx2 + ax + b. Denoting
m = 16 and n = 32012, we want the system of equations

{

am2 + bm+ c = n

cn2 + an+ b = 1

to have an integer solution (a, b, c). Substituting c = n − am2 − bm in the second
equation yields n2(n−am2−bm)+an+b = 1, i.e. n(m2n−1)a+(mn2−1)b = n3−1,
so it suffices that this equation have an integer solution (a, b). The last condition
is equivalent to gcd(n(m2n − 1), mn2 − 1) | n3 − 1, which is true: Indeed, if
d | n(m2n − 1) and d | mn2 − 1, then d | n(m2n− 1)−m(mn2 − 1) = m− n, and
therefore d | mn2 − 1 + n2(n−m) = n3 − 1.

Second solution. As in the first solution, Q(32012) 6= 0.

In order to achieve that Q(32012) = 1, knowing that P (32012) ≡ Q(32012)
(mod 32012 − 1), we impose the extra condition P (32012) = P (16) = 32012. The
polynomial P is of the form P (x) = (x− 16)(x− 32012)S(x) + 32012. Suppose that
S is chosen in such a way that P (x) = anx

n + · · ·+ a2x
2 + (c+ 1)x+ c for some

c ∈ Z; then taking Q(x) = anx
n + · · ·+ a2x

2 + cx + (c + 1) would yield precisely
Q(32012) = P (32012)− (32012 − 1) = 1.

We find S(x) in the form ax+ b. The last two coefficients in P (x) are 16 · 32012a−
(16+ 32012)b and 16 · 32012b+32012 respectively. Thus it suffices to take a and b so
that 16 · 32012a − (16 · 32012 + 16 + 32012)b − 32012 = 1, which is possible because
16 · 32012 and 16 · 32012 + 16 + 32012 are coprime.

2. Let K and L be the midpoints of AC and AB respectively, O the circumcenter of

△ABC, and M ∈ AC, N ∈ AB such
that PM ‖ EK and PN ‖ EL. Then
∠PMC = ∠EKC = ∠LKC−∠LKE =
180◦ − γ − ∠CBO = 2α + β − 90◦.

Consider the reflection C′ of point C

in the perpendicular bisector of MN

(C′ 6≡ B since AB 6= AC). Points B,
P,N and C′ lie on a circle for ∠NC′P

A

B C

E

P K

L

M
N

C′
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= ∠NBP = x. Thus β − x = ∠CBP = ∠PNC′ = ∠PMC = 2α + β − 90◦, and
therefore the statement.

Second solution. The Ceva theorem in trigonometric form for point P in triangle

ABC gives us sin∠CAE
sin∠EAB

= sin∠PBC
sin∠PCB

= sin(β−x)
sin(γ−x)

. On the other hand, the same the-

orem for E in △AKL gives sin∠CAE
sin∠EAB = sin∠AKE

sin∠ELA = cos(γ−α)
cos(β−α) . These two equalities

together imply

0 = sin(β − x) cos(β − α)− sin(γ − x) cos(γ − α)
= 1

2
(sin(2β − α− x) + sin(α− x)− sin(2γ − α− x)− sin(α− x))

= sin(β − γ) cos(180◦ − 2α− x),

so x = 90◦ − 2α.

3. Let g be a primitive root modulo p. The sequence S1, S2, . . . , Sp−1 is a permutation
of S1, Sg, . . . , Sgp−2. Since the sequence S1, Sg, Sg2, . . . is periodic with period p−1,
its minimal period d divides p − 1 and the sets S1, Sg, . . . , Sgd−1 are mutually
distinct. The multiplications in the sequel are modulo p.

(b) It follows from above that k | p − 1. On the other hand, for k | p − 1 we can
take S = {1, gk, g2k, . . .}.
(a) The minimal period of the sequence S1, Sg, Sg2 , . . . is 2, so S0 = S2 6= S1.
Therefore x ∈ S ⇒ g2x ∈ S. If a, ga ∈ S, then all gna (n ∈ N0) are in S, i.e.
S = {1, 2, . . . , p− 1} which is impossible. It follows that x ∈ S ⇒ gx 6∈ S, g2x ∈ S.
Thus S is either {1, g2, g4, . . . , gp−3} or {g, g3, . . . , gp−2}, so the answer is two.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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BALKAN MATHEMATICAL OLYMPIAD

Agros, Cyprus , 30.06.2013.

1. In a triangle ABC, the excircle ωa opposite A touches AB at P and AC at Q,
and the excircle ωb opposite B touches BA at M and BC at N . Let K be the
projection of C onto MN , and let L be the projection of C onto PQ.
Show that the quadrilateral MKLP is cyclic. (Bulgaria)

2. Determine all positive integers x, y and z such that

x5 + 4y = 2013z.
(Serbia)

3. Let S be the set of positive real numbers. Find all functions f : S3 → S such
that, for all positive real numbers x, y, z and k, the following three conditions are
satisfied:

(i) xf(x, y, z) = zf(z, y, x);

(ii) f(x, ky, k2z) = kf(x, y, z);

(iii) f(1, k, k+ 1) = k + 1. (United Kingdom)

4. In a mathematical competition some competitors are friends; friendship is always
mutual, that is to say that when A is a friend of B, then also B is a friend of A. We
say that n ≥ 3 different competitors A1, A2, . . . , An form a weakly-friendly cycle if
Ai is not a friend of Ai+1 for 1 ≤ i ≤ n (An+1 = A1), and there are no other pairs
of non-friends among the components of this cycle.
The following property is satisfied:

for every competitor C, and every weakly-friendly cycle S of competi-
tors not including C, the set of competitors D in S which are not
friends of C has at most one element.

Prove that all competitors of this mathematical competition can be arranged into
three rooms, such that every two competitors that are in the same room are friends.

(Serbia)

Time allowed: 270 minutes.
Each problem is worth 10 points.
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SOLUTIONS

1. We denote the angles of the triangle by α, β and γ as usual. Since ∠KMP = 90◦−β
2
,

it suffices to prove that ∠KLP = 90◦ + β
2 , which is equivalent to ∠KLC = β

2 .

Let I be the incenter of triangle ABC and let D be the tangency point of the
incircle with AB. Since CK ‖ IB and CL ‖ IA, it holds that ∠KCL = ∠AIB.
Moreover, from CN = AD = b+c−a

2
and ∠KCN = β

2
we obtain CK = CN cos β

2
=

AD cos β
2 = AI cos α

2 cos β
2 and analogously CL = BI cos α

2 cos β
2 , which imply

CK
CL = AI

BI . Hence the triangles KCL and AIB are similar, and thus ∠KLC =

∠ABI = β
2 .

2. Reducing modulo 11 yields x5 + 4y ≡ 0 (mod 11), where x5 ≡ ±1 (mod 11), so
we also have 4y ≡ ±1 (mod 11). Congruence 4y ≡ −1 (mod 11) does not hold for
any y, whereas 4y ≡ 1 (mod 11) holds if and only if 5 | y.
Setting t = 4y/5, the equation becomes x5 + t5 = A · B = 2013z, where (x, t) = 1
and A = x + t, B = x4 − x3t + x2t2 − xt3 + t4. Furthermore, from B = A(x3 −
2x2t+ 3xt2 − 4t3) + 5t4 we deduce (A,B) = (A, 5t4) | 5, but 5 ∤ 2013z, so we must
have (A,B) = 1. Therefore A = az and B = bz for some positive integers a and b

with a · b = 2013.

On the other hand, from 1
16A

4 ≤ B ≤ A4 (which is a simple consequence of the
mean inequality) we obtain 1

16
a4 ≤ b ≤ a4, i.e. 1

16
a5 ≤ ab = 2013 ≤ a5. Therefore

5 ≤ a ≤ 8, which is impossible because 2013 has no divisors in the interval [5, 8].

3. It follows from the properties of function f that, for all x, y, z, a, b > 0,

f(a2x, aby, b2z) = bf(a2x, ay, z) = b· z

a2x
f(z, ay, a2x) =

bz

ax
f(z, y, x) =

b

a
f(x, y, z).

We shall choose a and b in such a way that the triple (a2x, aby, b2z) is of the form
(1, k, k+1) for some k: namely, we take a = 1√

x
and b satisfying b2z−aby = 1, which

upon solving the quadratic equation yields b =
y+

√
y2+4xz

2z
√
x

and k =
y(y+

√
y2+4xz)

2xz
.

Now we easily obtain

f(x, y, z) =
a

b
f(a2x, aby, b2z) =

a

b
f(1, k, k+ 1) =

a

b
(k + 1) =

y +
√

y2 + 4xz

2x
.

It is directly verified that f satisfies the problem conditions.

4. Consider the graph G whose vertices are the contestants, where there is an edge
between two contestants if and only if they are not friends.
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Lemma. There is a vertex in graph G with degree at most 2.

Proof. Suppose that each vertex has a degree at least three. Consider the longest
induced path P = u0u1u2 . . . uk in the graph (that is, the path in which no two
nonadjacent vertices are connected by an edge). The vertex u0 is connected
to another two vertices v and w, which must be outside the path P . Since
P is the longest induced path, v and w have neighbors in it. Let ui and uj

be the neighbors of v and w respectively with the smallest i and j; assume
without loss of generality that i ≥ j. Then u0, u1, . . . , ui, v form a weakly
friendly cycle, but w has two neighbors in it (u0 and uj), a contradiction.

We now prove the problem statement by induction on the number n of vertices in
G. For n ≤ 3 the statement is trivial; assume that it holds for n−1. By the Lemma,
there is a vertex v in G of degree at most two. Graph G′, obtained by removing
vertex v (and all edges incident to it), clearly satisfies the problem conditions, so
its vertices can be partitioned into three rooms in a desired way. Since v has no
neighbors in at least one of the rooms, we can place v in that room, finishing the
proof.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::





::::::::::::::::::::::::::::::::::::::::::::::::::::
Mathematical Competitions in Serbia

http://srb.imomath.com/
::::::::::::

The IMO Compendium Olympiad Archive Mathematical Society of Serbia
http://www.imocompendium.com/ http://www.dms.org.rs/

::::::::::::::::::::::::::::::::::::::::::::::::::::

The IMO Compendium - 2nd Edition: 1959-2009
Until the first edition of this book appearing in 2006, it has been almost impossi-
ble to obtain a complete collection of the problems proposed at the IMO in book
form. ”The IMO Compendium” is the result of a collaboration between four
former IMO participants from Yugoslavia, now Serbia, to rescue these problems
from old and scattered manuscripts, and produce the ultimate source of IMO
practice problems. This book attempts to gather all the problems and solutions
appearing on the IMO through 2009. This second edition contains 143 new
problems, picking up where the 1959-2004 edition has left off, accounting for
2043 problems in total.

Publisher: Springer (2011); Hardcover, 823 pages; Language: English; ISBN: 1441998535

For information on how to order, visit http://www.imocompendium.com/
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