Log In
Register
IMOmath
Olympiads
Book
Training
Forum
IMOmath
Combinatorics
1.
(10 p.)
Assume that \( A \) is a 40element subset of \( \{1,2,3,\dots,50\} \), and let \( n \) be the sum of the elements of \( A \). Find the number of possible values of \( n \).
2.
(24 p.)
We are given an unfair coin. When the coin is tossed, the probability of heads is 0.4. The coin is tossed 10 times. Let \( a_n \) be the number of heads in the first \( n \) tosses. Let \( P \) be the probability that \( a_n/n \leq 0.4 \) for \( n = 1, 2, \dots , 9 \) and \( a_{10}/10 = 0.4 \). Evaluate \( \frac{P\cdot 10^{10}}{24^4} \).
3.
(24 p.)
There are 27 candidates in elections and \( n \) citizens that vote for them. If a candidate gets \( m \) votes, then \( 100m/n \leq m1 \). What is the smallest possible value of \( n \)?
4.
(14 p.)
Given a convex polyhedron with 26 vertices, 60 edges and 36 faces, 24 of the faces are triangular and 12 are quadrilaterals. A space diagonal is a line segment connecting two vertices which do not belong to the same face. How many space diagonals does the polyhedron have?
5.
(26 p.)
A frog is jumping in the coordinate plane according to the following rules: (i) From any lattice point \( (a,b) \), the frog can jump to \( (a+1,b) \), \( (a,b+1) \), or \( (a+1,b+1) \). (ii) There are no right angle turns in the frog’s path. How many different paths can the frog take from \( (0,0) \) to \( (5,5) \)?
20052019
IMOmath.com
 imomath"at"gmail.com  Math rendered by
MathJax
Home

Olympiads

Book

Training

IMO Results

Forum

Links

About

Contact us